Low-dose carbon monoxide suppresses metastatic progression of disseminated cancer cells. Academic Article uri icon

Overview

abstract

  • Low-dose carbon monoxide (CO) is under investigation in clinical trials to treat non-cancerous diseases and has excellent safety profiles. Due to the early detection and cancer awareness, increasing cancer patients are diagnosed at early stages and potentially curative surgical resection can be done. However, many patients ultimately experience recurrence. Here, we evaluate the therapeutic effect of CO on cancer metastatic progression. We show that 250 ppm CO inhibits migration of multiple types of cancer cell lines including breast, pancreatic, colon, prostate, liver, and lung cancer and reduces the ability to adhere to fibronectin. We demonstrate that in mouse models, 250 ppm inhaled CO inhibits lung metastasis of breast cancer and liver metastasis of pancreatic cancer. Moreover, low-dose CO suppresses recurrence and increases survival after surgical removal of primary pancreatic cancer in mice. Mechanistically, low-dose CO blocks transcription of heme importers, leading to diminished intracellular heme levels and a heme-regulated enzyme, cytochrome P4501B1 (CYP1B1). Either supplementing heme or overexpressing CYP1B1 reverses the anti-migration effect of low-dose CO. Taken together, low-dose CO therapy inhibits cell migration, reduces adhesion to fibronectin, prevents disseminated cancer cells from expanding into gross metastases, and improves survival in pre-clinical mouse models of metastasis.

publication date

  • July 19, 2022

Research

keywords

  • Lung Neoplasms
  • Pancreatic Neoplasms

Identity

Digital Object Identifier (DOI)

  • 10.1016/j.canlet.2022.215831

PubMed ID

  • 35868533