The eukaryotic translation initiation factor eIF4E reprograms alternative splicing. Academic Article uri icon

Overview

abstract

  • Aberrant splicing is typically attributed to splice-factor (SF) mutation and contributes to malignancies including acute myeloid leukemia (AML). Here, we discovered a mutation-independent means to extensively reprogram alternative splicing (AS). We showed that the dysregulated expression of eukaryotic translation initiation factor eIF4E elevated selective splice-factor production, thereby impacting multiple spliceosome complexes, including factors mutated in AML such as SF3B1 and U2AF1. These changes generated a splicing landscape that predominantly supported altered splice-site selection for ~800 transcripts in cell lines and ~4,600 transcripts in specimens from high-eIF4E AML patients otherwise harboring no known SF mutations. Nuclear RNA immunoprecipitations, export assays, polysome analyses, and mutational studies together revealed that eIF4E primarily increased SF production via its nuclear RNA export activity. By contrast, eIF4E dysregulation did not induce known SF mutations or alter spliceosome number. eIF4E interacted with the spliceosome and some pre-mRNAs, suggesting its direct involvement in specific splicing events. eIF4E induced simultaneous effects on numerous SF proteins, resulting in a much larger range of splicing alterations than in the case of mutation or dysregulation of individual SFs and providing a novel paradigm for splicing control and dysregulation.

publication date

  • February 27, 2023

Research

keywords

  • Alternative Splicing
  • Leukemia, Myeloid, Acute

Identity

PubMed Central ID

  • PMC2258745

Scopus Document Identifier

  • 85148880019

Digital Object Identifier (DOI)

  • 10.15252/embj.2021110496

PubMed ID

  • 36843541

Additional Document Info

volume

  • 42

issue

  • 7