Vascular endothelial growth factor pathway promotes osseointegration and CD31hiEMCNhi endothelium expansion in a mouse tibial implant model: an animal study. Academic Article uri icon

Overview

abstract

  • AIMS: It is increasingly appreciated that coordinated regulation of angiogenesis and osteogenesis is needed for bone formation. How this regulation is achieved during peri-implant bone healing, such as osseointegration, is largely unclear. This study examined the relationship between angiogenesis and osteogenesis in a unique model of osseointegration of a mouse tibial implant by pharmacologically blocking the vascular endothelial growth factor (VEGF) pathway. MATERIALS AND METHODS: An implant was inserted into the right tibia of 16-week-old female C57BL/6 mice (n = 38). Mice received anti-VEGF receptor-1 (VEGFR-1) antibody (25 mg/kg) and VEGF receptor-2 (VEGFR-2) antibody (25 mg/kg; n = 19) or an isotype control antibody (n = 19). Flow cytometric (n = 4/group) and immunofluorescent (n = 3/group) analyses were performed at two weeks post-implantation to detect the distribution and density of CD31hiEMCNhi endothelium. RNA sequencing analysis was performed using sorted CD31hiEMCNhi endothelial cells (n = 2/group). Osteoblast lineage cells expressing osterix (OSX) and osteopontin (OPN) were also detected with immunofluorescence. Mechanical pull-out testing (n = 12/group) was used at four weeks post-implantation to determine the strength of the bone-implant interface. After pull-out testing, the tissue attached to the implant surface was harvested. Whole mount immunofluorescent staining of OSX and OPN was performed to determine the amount of osteoblast lineage cells. RESULTS: Flow cytometry revealed that anti-VEGFR treatment decreased CD31hiEMCNhi vascular endothelium in the peri-implant bone versus controls at two weeks post-implantation. This was confirmed by the decrease of CD31 and endomucin (EMCN) double-positive cells detected with immunofluorescence. In addition, treated mice had more OPN-positive cells in both peri-implant bone and tissue on the implant surface at two weeks and four weeks, respectively. More OSX-positive cells were present in peri-implant bone at two weeks. More importantly, anti-VEGFR treatment decreased the maximum load of pull-out testing compared with the control. CONCLUSION: VEGF pathway controls the coupling of angiogenesis and osteogenesis in orthopaedic implant osseointegration by affecting the formation of CD31hiEMCNhi endothelium. Cite this article: Bone Joint J 2019;101-B(7 Supple C):108-114.

publication date

  • July 1, 2019

Research

keywords

  • Angiogenesis Inhibitors
  • Bone-Implant Interface
  • Osseointegration
  • Prostheses and Implants
  • Tibia
  • Titanium
  • Vascular Endothelial Growth Factor A

Identity

PubMed Central ID

  • PMC7024545

Scopus Document Identifier

  • 85068919896

Digital Object Identifier (DOI)

  • 10.1302/0301-620X.101B7.BJJ-2018-1473.R1

PubMed ID

  • 31256654

Additional Document Info

volume

  • 101-B

issue

  • 7_Supple_C