Molecular mechanism of fascin function in filopodial formation. Academic Article uri icon

Overview

abstract

  • Filopodia are cell surface protrusions that are essential for cell migration. This finger-like structure is supported by rigid tightly bundled actin filaments. The protein responsible for actin bundling in filopodia is fascin. However, the mechanism by which fascin functions in filopodial formation is not clear. Here we provide biochemical, cryo-electron tomographic, and x-ray crystal structural data demonstrating the unique structural characteristics of fascin. Systematic mutagenesis studies on 100 mutants of fascin indicate that there are two major actin-binding sites on fascin. Crystal structures of four fascin mutants reveal concerted conformational changes in fascin from inactive to active states in the process of actin bundling. Mutations in any one of the actin-binding sites impair the cellular function of fascin in filopodial formation. Altogether, our data reveal the molecular mechanism of fascin function in filopodial formation.

publication date

  • November 26, 2012

Research

keywords

  • Carrier Proteins
  • Gene Expression Regulation
  • Gene Expression Regulation, Neoplastic
  • Microfilament Proteins
  • Pseudopodia

Identity

PubMed Central ID

  • PMC3537022

Scopus Document Identifier

  • 84872091686

Digital Object Identifier (DOI)

  • 10.1074/jbc.M112.427971

PubMed ID

  • 23184945

Additional Document Info

volume

  • 288

issue

  • 1