Pericentromeric instability and spontaneous emergence of human neoacrocentric and minute chromosomes in the alternative pathway of telomere lengthening. Academic Article uri icon

Overview

abstract

  • In the alternative pathway of telomere lengthening (ALT), neoplastic cell growth is prolonged by telomere recombination. We show that ALT is unexpectedly characterized by high rates of ongoing pericentromeric chromosomal instability. Combined with telomeric recombination, ALT pericentromeric instability generates neoacrocentric chromosomes. In the present studies, we describe a subgroup of ALT neoacrocentric minute chromosomes, composed of DNA entities two to five times smaller in size than human chromosome 21. The frequencies of ALT minute chromosomes were increased by gamma-irradiation and suppressed by telomerase. Continuous growth after telomerase inhibition/depletion was followed by increased rates of telomeric sister chromatid recombination and the emergence of minute chromosomes. We show that ALT minute chromosomes were derived from true centromeric fissions and/or chromosomal breakage/fusion/bridge cycles. They exhibit a two-chromatid structure, carry genomic DNA, centromeric and telomeric repeats, and display regular mitotic functionality. These observations are important in understanding the global genomic instability that characterizes most human advanced malignancies.

publication date

  • October 1, 2008

Research

keywords

  • Centromere
  • Chromosomal Instability
  • Chromosome Aberrations
  • Signal Transduction
  • Telomere

Identity

Scopus Document Identifier

  • 54249154250

Digital Object Identifier (DOI)

  • 10.1158/0008-5472.CAN-08-0945

PubMed ID

  • 18829574

Additional Document Info

volume

  • 68

issue

  • 19