Epithelial microRNAs regulate gut mucosal immunity via epithelium-T cell crosstalk. Academic Article uri icon

Overview

abstract

  • Colonic homeostasis entails epithelium-lymphocyte cooperation, yet many participants in this process are unknown. We show here that epithelial microRNAs mediate the mucosa-immune system crosstalk necessary for mounting protective T helper type 2 (T(H)2) responses. Abolishing the induction of microRNA by gut-specific deletion of Dicer1 (Dicer1(Δgut)), which encodes an enzyme involved in microRNA biogenesis, deprived goblet cells of RELMβ, a key T(H)2 antiparasitic cytokine; this predisposed the host to parasite infection. Infection of Dicer1(Δgut) mice with helminths favored a futile T(H)1 response with hallmarks of inflammatory bowel disease. Interleukin 13 (IL-13) induced the microRNA miR-375, which regulates the expression of TSLP, a T(H)2-facilitating epithelial cytokine; this indicated a T(H)2-amplification loop. We found that miR-375 was required for RELMβ expression in vivo; miR-375-deficient mice had significantly less intestinal RELMβ, which possibly explains the greater susceptibility of Dicer1(Δgut) mice to parasites. Our findings indicate that epithelial microRNAs are key regulators of gut homeostasis and mucosal immunity.

publication date

  • January 30, 2011

Research

keywords

  • Immunity, Mucosal
  • MicroRNAs
  • T-Lymphocytes

Identity

Scopus Document Identifier

  • 79951598704

Digital Object Identifier (DOI)

  • 10.1038/ni.1994

PubMed ID

  • 21278735

Additional Document Info

volume

  • 12

issue

  • 3