Protein inactivation in mycobacteria by controlled proteolysis and its application to deplete the beta subunit of RNA polymerase. Academic Article uri icon

Overview

abstract

  • Using a component of the Escherichia coli protein degradation machinery, we have established a system to regulate protein stability in mycobacteria. A protein tag derived from the E. coli SsrA degradation signal did not affect several reporter proteins in wild-type Mycobacterium smegmatis or Mycobacterium tuberculosis. Expression of the adaptor protein SspB, which recognizes this modified tag and helps deliver tagged proteins to the protease ClpXP, strongly decreased the activities and protein levels of different reporters. This inactivation did not occur when the function of ClpX was inhibited. Using this system, we constructed a conditional M. smegmatis knockdown mutant in which addition of anhydrotetracycline (atc) caused depletion of the beta subunit of RNA polymerase, RpoB. The impact of atc on this mutant was dose-dependent. Very low amounts of atc did not prevent growth but increased sensitivity to an antibiotic that inactivates RpoB. Intermediate amounts of RpoB knockdown resulted in bacteriostasis and a more substantial depletion led to a decrease in viability by up to 99%. These studies identify SspB-mediated proteolysis as an efficient approach to conditionally inactivate essential proteins in mycobacteria. They further demonstrate that depletion of RpoB by ∼ 93% is sufficient to cause death of M. smegmatis.

publication date

  • November 12, 2010

Research

keywords

  • Bacterial Proteins
  • DNA-Directed RNA Polymerases
  • Mycobacterium smegmatis
  • Mycobacterium tuberculosis

Identity

PubMed Central ID

  • PMC3064785

Scopus Document Identifier

  • 79953701962

Digital Object Identifier (DOI)

  • 10.1093/nar/gkq1149

PubMed ID

  • 21075796

Additional Document Info

volume

  • 39

issue

  • 6