Treatment of septic shock in rats with nitric oxide synthase inhibitors and inhaled nitric oxide. Academic Article uri icon

Overview

abstract

  • OBJECTIVE: To evaluate the effect of treatment with a combination of nitric oxide synthase inhibitors and inhaled nitric oxide on systemic hypotension during sepsis. DESIGN: Prospective, randomized, controlled study on anesthetized animals. SETTING: A cardiopulmonary research laboratory. SUBJECTS: Forty-seven male adult Sprague-Dawley rats. INTERVENTIONS: Animals were anesthetized, mechanically ventilated with room air, and randomized into six groups: a) the control group (C, n=6) received normal saline infusion; b) the endotoxin-treated group received 100 mg/kg i.v. of Escherichia coli lipopolysaccharide (LPS, n=9); c) the third group received LPS, and 1 hr later the animals were treated with 100 mg/kg i.v. Nw-nitro-L-arginine (LNA, n=9); d) the fourth group received LPS, and after 1 hr, the animals were treated with 100 mg/kg i.v. aminoguanidine (AG, n=9); e) the fifth group received LPS and 1 hr later was treated with LNA plus 1 ppm inhaled nitric oxide (LNA+NO, n=7); f) the sixth group received LPS and 1 hr later was treated with aminoguanidine plus inhaled NO (AG+NO, n=7). Inhaled NO was administered continuously until the end of the experiment. MEASUREMENTS AND MAIN RESULTS: Systemic mean blood pressure (MAP) was monitored through a catheter in the carotid artery. Mean exhaled NO (ENO) was measured before LPS (T0) and every 30 mins thereafter for 5 hrs. Arterial blood gases and pH were measured every 30 mins for the first 2 hrs and then every hour. No attempt was made to regulate the animal body temperature. All the rats became equally hypothermic (28.9+/-1.2 degrees C [SEM]) at the end of the experiment. In the control group, blood pressure and pH remained stable for the duration of the experiment, however, ENO increased gradually from 1.3+/-0.7 to 17.6+/-3.1 ppb after 5 hrs (p< .05). In the LPS treated rats, MAP decreased in the first 30 mins and then remained stable for 5 hrs. The decrease in MAP was associated with a gradual increase in ENO, which was significant after 180 mins (58.9+/-16.6 ppb) and reached 95.3+/-27.5 ppb after 5 hrs (p< .05). LNA and AG prevented the increase in ENO after LPS to the level in the control group. AG caused a partial reversal of systemic hypotension, which lasted for the duration of the experiment. LNA reversed systemic hypotension almost completely but only transiently for 1 hr, and caused severe metabolic acidosis in all animals. The co-administration of NO with AG had no added benefits on MAP and pH. In contrast, NO inhalation increased the duration of the reversal in MAP after LNA, alleviated the degree of acidosis, and decreased the mortality rate (from 55% to 29%). CONCLUSIONS: In this animal model, LPS-induced hypotension was alleviated slightly and durably after AG, but only transiently after LNA. Furthermore, co-administration of NO with AG had no added benefits but alleviated the severity of metabolic acidosis and mortality after LNA. We conclude that nitric oxide synthase (NOS) inhibitors, given as a single large bolus in the early phase of sepsis, can exhibit some beneficial effects. Administration of inhaled NO with NOS inhibitors provided more benefits in some conditions and therefore may be a useful therapeutic combination in sepsis. NO production in sepsis does not seem to be a primary cause of systemic hypotension. Other factors are likely to have a major role.

publication date

  • December 1, 1998

Research

keywords

  • Free Radical Scavengers
  • Guanidines
  • Nitric Oxide
  • Nitric Oxide Synthase
  • Nitroarginine
  • Shock, Septic

Identity

Scopus Document Identifier

  • 0032445945

PubMed ID

  • 9875915

Additional Document Info

volume

  • 26

issue

  • 12