Multiple configurations of EGFR exon 20 resistance mutations after first- and third-generation EGFR TKI treatment affect treatment options in NSCLC Academic Article uri icon

Overview

MeSH Major

  • Antineoplastic Agents
  • Carcinoma, Non-Small-Cell Lung
  • Drug Resistance, Neoplasm

abstract

  • After sequential treatment with first- and third-generation EGFR tyrosine kinase inhibitors (TKIs), EGFR-mutant non-small cell lung cancers frequently harbor multiple resistance mutations in exon 20 of EGFR including T790M, mediating resistance to first-generation TKIs, and at codons 792, 796, or 797 mediating resistance to third-generation TKIs. However, whether these resistance mutations are in cis or trans has therapeutic implications for patients. We analyzed a cohort of 29 patients with NSCLC harboring EGFR mutations at codons 792, 796, or 797 to establish the configuration of these mutations. We performed hybrid capture-based, next-generation sequencing on formalin-fixed paraffin-embedded biopsy tissue or liquid biopsy. 27 samples had both a T790M mutation and a mutation at codons 792, 796, or 797. In all of these cases, the mutations were found in the cis configuration; the trans configuration was not observed. Two patients' samples harbored a mutation at codon 797 but no T790M mutation. In these two cases, longitudinal analysis showed earlier biopsies harbored EGFR T790M, which was undetectable following osimertinib treatment. Treatment of one these patients with both first- and third-generation EGFR TKIs resulted in a mixed response. Here we describe multiple configurations of EGFR T790M and third-generation TKI resistance mutations at codons 792, 796, and 797. These mutations are most commonly found in cis, which confers resistance to all current EGFR TKIs. We also describe two patients that exhibited T790M loss with acquisition of a mutation at codon 797. In addition, one of these patients, with an EGFR C797S in a lung biopsy was subsequently found to have EGFR C797N in a later biopsy of pleural fluid, highlighting the dynamic multiclonal nature of advanced NSCLC.

publication date

  • November 2018

Research

keywords

  • Academic Article

Identity

Language

  • eng

PubMed Central ID

  • PMC6258560

Digital Object Identifier (DOI)

  • 10.1371/journal.pone.0208097

PubMed ID

  • 30481207

Additional Document Info

start page

  • e0208097

volume

  • 13

number

  • 11