Progress in the development of olfactory-based bioelectronic chemosensors Academic Article uri icon

Overview

MeSH Major

  • DNA
  • Glutamate Decarboxylase
  • Olfactory Bulb
  • Promoter Regions, Genetic
  • Smell
  • Tyrosine 3-Monooxygenase

abstract

  • Artificial chemosensory devices have a wide range of applications in industry, security, and medicine. The development of these devices has been inspired by the speed, sensitivity, and selectivity by which the olfactory system in animals can probe the chemical nature of the environment. In this review, we examine how molecular and cellular components of natural olfactory systems have been incorporated into artificial chemosensors, or bioelectronic sensors. We focus on the biological material that has been combined with signal transduction systems to develop artificial chemosensory devices. The strengths and limitations of different biological chemosensory material at the heart of these devices, as well as the reported overall effectiveness of the different bioelectronic sensor designs, is examined. This review also discusses future directions and challenges for continuing to advance development of bioelectronic sensors.

publication date

  • January 2018

Research

keywords

  • Academic Article

Identity

Language

  • eng

Digital Object Identifier (DOI)

  • 10.1016/j.bios.2018.08.063

PubMed ID

  • 30201333

Additional Document Info