Microbiota Disruption Induced by Early Use of Broad-Spectrum Antibiotics Is an Independent Risk Factor of Outcome after Allogeneic Stem Cell Transplantation Academic Article uri icon


MeSH Major

  • Interleukins
  • Regeneration
  • Thymocytes
  • Thymus Gland


  • In allogeneic stem cell transplantation (ASCT), systemic broad-spectrum antibiotics are frequently used for treatment of infectious complications, but their effect on microbiota composition is still poorly understood. This retrospective analysis of 621 patients who underwent ASCT at the University Medical Center of Regensburg and Memorial Sloan Kettering Cancer Center in New York assessed the impact of timing of peritransplant antibiotic treatment on intestinal microbiota composition as well as transplant-related mortality (TRM) and overall survival. Early exposure to antibiotics was associated with lower urinary 3-indoxyl sulfate levels (P < .001) and a decrease in fecal abundance of commensal Clostridiales (P = .03) compared with late antibiotic treatment, which was particularly significant (P = .005) for Clostridium cluster XIVa in the Regensburg group. Earlier antibiotic treatment before ASCT was further associated with a higher TRM (34%, 79/236) compared with post-ASCT (21%, 62/297, P = .001) or no antibiotics (7%, 6/88, P < .001). Timing of antibiotic treatment was the dominant independent risk factor for TRM (HR, 2.0; P ≤ .001) in multivariate analysis besides increase age (HR, 2.15; P = .004), reduced Karnofsky performance status (HR, 1.47; P = .03), and female donor-male recipient sex combination (HR, 1.56; P = .02) A competing risk analysis revealed the independent effect of early initiation of antibiotics on graft-versus-host disease-related TRM (P = .004) in contrast to infection-related TRM and relapse (not significant). The poor outcome associated with early administration of antibiotic therapy that is active against commensal organisms, and specifically the possibly protective Clostridiales, calls for the use of Clostridiales-sparing antibiotics and rapid restoration of microbiota diversity after cessation of antibiotic treatment.

publication date

  • November 2016



  • Academic Article



  • eng

PubMed Central ID

  • PMC5546237

Digital Object Identifier (DOI)

  • 10.1016/j.bbmt.2017.02.006

PubMed ID

  • 28232086

Additional Document Info

start page

  • 845

end page

  • 852