Trial Watch: Peptide-based anticancer vaccines Review uri icon

Overview

MeSH Major

  • Antineoplastic Agents
  • Cell Transformation, Neoplastic
  • Molecular Targeted Therapy
  • Neoplasms

abstract

  • Malignant cells express antigens that can be harnessed to elicit anticancer immune responses. One approach to achieve such goal consists in the administration of tumor-associated antigens (TAAs) or peptides thereof as recombinant proteins in the presence of adequate adjuvants. Throughout the past decade, peptide vaccines have been shown to mediate antineoplastic effects in various murine tumor models, especially when administered in the context of potent immunostimulatory regimens. In spite of multiple limitations, first of all the fact that anticancer vaccines are often employed as therapeutic (rather than prophylactic) agents, this immunotherapeutic paradigm has been intensively investigated in clinical scenarios, with promising results. Currently, both experimentalists and clinicians are focusing their efforts on the identification of so-called tumor rejection antigens, i.e., TAAs that can elicit an immune response leading to disease eradication, as well as to combinatorial immunostimulatory interventions with superior adjuvant activity in patients. Here, we summarize the latest advances in the development of peptide vaccines for cancer therapy.

publication date

  • January 2015

Research

keywords

  • Review

Identity

Language

  • eng

PubMed Central ID

  • PMC4485775

Digital Object Identifier (DOI)

  • 10.4161/2162402X.2014.974411

PubMed ID

  • 26137405

Additional Document Info

start page

  • e974411

volume

  • 4

number

  • 4