α-Amylase in Vaginal Fluid: Association with Conditions Favorable to Dominance of Lactobacillus Academic Article uri icon

Overview

MeSH Major

  • Candidiasis, Vulvovaginal
  • Lactobacillus
  • Vagina
  • Vaginosis, Bacterial
  • alpha-Amylases

abstract

  • Vaginal glycogen is degraded by host α-amylase and then converted to lactic acid by Lactobacilli. This maintains the vaginal pH at ≤4.5 and prevents growth of other bacteria. Therefore, host α-amylase activity may promote dominance of Lactobacilli. We evaluated whether the α-amylase level in vaginal fluid is altered in women with bacterial vaginosis (BV) and vulvovaginal candidiasis (VVC) and whether its concentration was associated with levels of lactic acid isomers and host mediators. Vaginal fluid was obtained from 43 women with BV, 50 women with VVC, and 62 women with no vulvovaginal disorders. Vaginal fluid concentrations of α-amylase, secretory leukocyte protease inhibitor (SLPI), hyaluronan, hyaluronidase-1, β-defensin, and elafin were measured by enzyme-linked immunosorbent assay (ELISA). Vaginal concentrations of neutrophil gelatinase-associated lipocalin (NGAL), matrix metalloproteinase (MMP) 8, and d- and l-lactic acid levels in these patients were previously reported. The median vaginal fluid α-amylase level was 1.83 mU/mL in control women, 1.45 mU/mL in women with VVC, and 1.07 mU/mL in women with BV. Vaginal levels of α-amylase were correlated with d-lactic acid (P = .003) but not with l-lactic acid (P > .05) and with SLPI (P < .001), hyaluronidase-1 (P < .001), NGAL (P = .001), and MMP-8 (P = .005). The exfoliation of glycogen-rich epithelial cells into the vaginal lumen by hyaluronidase-1 and MMP-8 may increase glycogen availability and promote α-amylase activity. The subsequent enhanced availability of glycogen breakdown products would favor proliferation of Lactobacilli, the primary producers of d-lactic acid in the vagina. Concomitant production of NGAL and SLPI would retard growth of BV-related bacteria.

publication date

  • January 2015

Research

keywords

  • Academic Article

Identity

Language

  • eng

Digital Object Identifier (DOI)

  • 10.1177/1933719115581000

PubMed ID

  • 25878210

Additional Document Info

start page

  • 1393

end page

  • 8

volume

  • 22

number

  • 11