Searching for conservation Laws in brain dynamics-BOLD flux and source imaging Academic Article uri icon

Overview

MeSH Major

  • Brain
  • Cognition
  • Magnetic Resonance Imaging
  • Persistent Vegetative State

abstract

  • © 2014 by the authors.Blood-oxygen-level-dependent (BOLD) imaging is the most important noninvasive tool to map human brain function. It relies on local blood-flow changes controlled by neurovascular coupling effects, usually in response to some cognitive or perceptual task. In this contribution we ask if the spatiotemporal dynamics of the BOLD signal can be modeled by a conservation law. In analogy to the description of physical laws, which often can be derived from some underlying conservation law, identification of conservation laws in the brain could lead to new models for the functional organization of the brain. Our model is independent of the nature of the conservation law, but we discuss possible hints and motivations for conservation laws. For example, globally limited blood supply and local competition between brain regions for blood might restrict the large scale BOLD signal in certain ways that could be observable. One proposed selective pressure for the evolution of such conservation laws is the closed volume of the skull limiting the expansion of brain tissue by increases in blood volume. These ideas are demonstrated on a mental motor imagery fMRI experiment, in which functional brain activation was mapped in a group of volunteers imagining themselves swimming. In order to search for local conservation laws during this complex cognitive process, we derived maps of quantities resulting from spatial interaction of the BOLD amplitudes. Specifically, we mapped fluxes and sources of the BOLD signal, terms that would appear in a description by a continuity equation. Whereas we cannot present final answers with the particular analysis of this particular experiment, some results seem to be non-trivial. For example, we found that during task the group BOLD flux covered more widespread regions than identified by conventional BOLD mapping and was always increasing during task. It is our hope that these results motivate more work towards the search for conservation laws in neuroimaging experiments or at least towards imaging procedures based on spatial interactions of signals. The payoff could be new models for the dynamics of the healthy brain or more sensitive clinical imaging approaches, respectively.

publication date

  • January 2014

Research

keywords

  • Academic Article

Identity

Digital Object Identifier (DOI)

  • 10.3390/e16073689

Additional Document Info

start page

  • 3689

end page

  • 3709

volume

  • 16

number

  • 7