Regulation of tyrosine hydroxylase transcription by hnRNP K and DNA secondary structure
Academic Article
Overview
MeSH Major
Cholinesterase Inhibitors
Nucleic Acid Conformation
Porphyrins
abstract
Regulation of tyrosine hydroxylase gene (Th) transcription is critical for specifying and maintaining the dopaminergic neuronal phenotype. Here we define a molecular regulatory mechanism for Th transcription conserved in tetrapod vertebrates. We show that heterogeneous nuclear ribonucleoprotein (hnRNP) K is a transactivator of Th transcription. It binds to previously unreported and evolutionarily conserved G:C-rich regions in the Th proximal promoter. hnRNP K directly binds to C-rich single-stranded DNA within these conserved regions and also associates with double-stranded sequences when proteins, such as CRE-binding protein, are bound to an adjacent cis-regulatory element. The single DNA strands within the conserved G:C-rich regions adopt either G-quadruplex or i-motif secondary structures. We also show that small molecule-mediated stabilization of these secondary structures represses Th promoter activity. These data suggest that these secondary structures are targets for pharmacological modulation of the dopaminergic phenotype.