Akt-activated endothelium constitutes the niche for residual disease and resistance to bevacizumab in ovarian cancer Academic Article uri icon


MeSH Major

  • Antibodies, Monoclonal, Humanized
  • Drug Resistance, Neoplasm
  • Endothelium
  • Neoplasm, Residual
  • Ovarian Neoplasms
  • Proto-Oncogene Proteins c-akt


  • Ovarian cancer is the second leading cause of cancer-related death in women worldwide. Despite optimal cytoreduction and adequate adjuvant therapies, initial tumor response is often followed by relapse suggesting the existence of a tumor niche. Targeted therapies have been evaluated in ovarian cancer to overcome resistant disease. Among them, antiangiogenic therapies inhibit new blood vessel growth, induce endothelial cell apoptosis, and block the incorporation of hematopoietic and endothelial progenitor cells into new blood vessels. Despite in vitro and in vivo successes, antivascular therapy with bevacizumab targeting VEGF-A has limited efficacy in ovarian cancer. The precise molecular mechanisms underlying clinical resistance to anti-VEGF therapies are not yet well understood. Among them, tumor and stromal heterogeneity might determine the treatment outcomes. The present study investigates whether abnormalities in the tumor endothelium may contribute to treatment resistance to bevacizumab and promote a residual microscopic disease. Here, we showed that ovarian cancer cells activate Akt phosphorylation in endothelial cells inducing resistance to bevacizumab leading to an autocrine loop based on FGF2 secretion. Altogether, our results point out the role of an activated endothelium in the resistance to bevacizumab and in the constitution of a niche for a residual disease.

publication date

  • December 2014



  • Academic Article



  • eng

Digital Object Identifier (DOI)

  • 10.1158/1535-7163.MCT-13-1053

PubMed ID

  • 25319392

Additional Document Info

start page

  • 3123

end page

  • 36


  • 13


  • 12