Ghrelin and des-acyl ghrelin inhibit aromatase expression and activity in human adipose stromal cells: Suppression of cAMP as a possible mechanism Academic Article uri icon

Overview

MeSH Major

  • Adipose Tissue
  • Aromatase
  • Breast
  • Cyclic AMP
  • Ghrelin
  • Stromal Cells

abstract

  • Aromatase converts androgens into estrogens and its expression within adipose stromal cells (ASCs) is believed to be the major driver of estrogen-dependent cancers in older women. Ghrelin is a gut-hormone that is involved in the regulation of appetite and known to bind to and activate the cognate ghrelin receptor, GHSR1a. The unacylated form of ghrelin, des-acyl ghrelin, binds weakly to GHSR1a but has been shown to play an important role in regulating a number of physiological processes. The aim of this study was to determine the effect of ghrelin and des-acyl ghrelin on aromatase in primary human ASCs. Primary human ASCs were isolated from adipose tissue of women undergoing cosmetic surgery. Real-time PCR and tritiated water-release assays were performed to examine the effect of treatment on aromatase transcript expression and aromatase activity, respectively. Treatments included ghrelin, des-acyl ghrelin, obestatin, and capromorelin (GHSR1a agonist). GHSR1a protein expression was assessed by Western blot and effects of treatment on Ca(2+) and cAMP second messenger systems were examined using the Flexstation assay and the Lance Ultra cAMP kit, respectively. Results demonstrate that pM concentrations of ghrelin and des-acyl ghrelin inhibit aromatase transcript expression and activity in ASCs under basal conditions and in PGE2-stimulated cells. Moreover, the effects of ghrelin and des-acyl ghrelin are mediated via effects on aromatase promoter PII-specific transcripts. Neither the GHSR1a-specific agonist capromorelin nor obestatin had any effect on aromatase transcript expression or activity. Moreover, GHSR1a protein was undetectable by Western blot and neither ghrelin nor capromorelin elicited a calcium response in ASCs. Finally, ghrelin caused a significant decrease in basal and forskolin-stimulated cAMP in ASC. These findings suggest that ghrelin acts at alternate receptors in ASCs by decreasing intracellular cAMP levels. Ghrelin mimetics may be useful in the treatment of estrogen-dependent breast cancer.

publication date

  • January 2014

Research

keywords

  • Academic Article

Identity

Language

  • eng

Digital Object Identifier (DOI)

  • 10.1007/s10549-014-3060-1

PubMed ID

  • 25056185

Additional Document Info

start page

  • 193

end page

  • 201

volume

  • 147

number

  • 1