Human epididymis protein 4 and secretory leukocyte protease inhibitor in vaginal fluid: Relation to vaginal components and bacterial composition Academic Article uri icon


MeSH Major

  • Bacteria
  • Bodily Secretions
  • Proteins
  • Secretory Leukocyte Peptidase Inhibitor
  • Vagina


  • Human epididymis protein 4 (HE4) is a protease inhibitor and a recently identified serum biomarker for ovarian cancer. Properties of HE4 in the genital tract of healthy women have not been evaluated. We evaluated associations between HE4 and a second vaginal protease inhibitor, secretory leukocyte protease inhibitor (SLPI), with vaginal concentrations of innate immune mediators or proteases and with the types of vaginal bacterial communities. Vaginal secretions were collected from 18 healthy reproductive age women and assayed by enzyme-linked immunosorbent assay for concentrations of HE4, SLPI, kallikrein 5, cathepsin B, interleukin 1β (IL-1), IL-1 receptor antagonist (IL-1 ra), mannose-binding lectin (MBL), the inducible 70-kDa heat shock protein, and matrix metalloproteinase (MMP)-8. The species composition of vaginal bacterial communities in 16 women was characterized by sequencing amplicons derived from 16S bacterial ribosomal RNA genes. Correlations between any 2 assays were analyzed by the Spearman rank correlation tests. Differences in the concentrations of HE4 and SLPI, and between soluble components and vaginal community types, were analyzed by the Mann-Whitney U tests. Vaginal HE4 concentrations, but not SLPI levels, were positively correlated with levels of IL-1β (P = .0152), IL-1ra (P = .0061), MBL (P = .0100), and MMP-8 (P = .0315). The median vaginal HE4 level, as well as concentrations of MBL, IL-1β, IL-1ra, and MMP-8, was highest when Gardnerella vaginalis dominated a vaginal community. The association between HE4, elevated levels of proteases, immune mediators and high proportions of G vaginalis strongly suggests that HE4 is a component of the proinflammatory immune response in the female genital tract.

publication date

  • January 2014



  • Academic Article



  • eng

Digital Object Identifier (DOI)

  • 10.1177/1933719113503416

PubMed ID

  • 24023032

Additional Document Info

start page

  • 538

end page

  • 42


  • 21


  • 4