Pyruvate protects pathogenic spirochetes from H2O2 killing Academic Article Article uri icon

Overview

MeSH Major

  • Asymptomatic Diseases
  • Cerebrovascular Disorders
  • Coronary Artery Disease
  • Peripheral Arterial Disease

abstract

  • Pathogenic spirochetes cause clinically relevant diseases in humans and animals, such as Lyme disease and leptospirosis. The causative agent of Lyme disease, Borrelia burgdorferi, and the causative agent of leptospirosis, Leptospria interrogans, encounter reactive oxygen species (ROS) during their enzootic cycles. This report demonstrated that physiologically relevant concentrations of pyruvate, a potent H2O2 scavenger, and provided passive protection to B. burgdorferi and L. interrogans against H 2O2. When extracellular pyruvate was absent, both spirochetes were sensitive to a low dose of H2O2 (≈0.6 mM per h) generated by glucose oxidase (GOX). Despite encoding a functional catalase, L. interrogans was more sensitive than B. burgdorferi to H 2O2 generated by GOX, which may be due to the inherent resistance of B. burgdorferi because of the virtual absence of intracellular iron. In B. burgdorferi, the nucleotide excision repair (NER) and the DNA mismatch repair (MMR) pathways were important for survival during H 2O2 challenge since deletion of the uvrB or the mutS genes enhanced its sensitivity to H2O2 killing; however, the presence of pyruvate fully protected ΔuvrB and ΔmutS from H 2O2 killing further demonstrating the importance of pyruvate in protection. These findings demonstrated that pyruvate, in addition to its classical role in central carbon metabolism, serves as an important H2O2 scavenger for pathogenic spirochetes. Furthermore, pyruvate reduced ROS generated by human neutrophils in response to the Toll-like receptor 2 (TLR2) agonist zymosan. In addition, pyruvate reduced neutrophil-derived ROS in response to B. burgdorferi , which also activates host expression through TLR2 signaling. Thus, pathogenic spirochetes may exploit the metabolite pyruvate, present in blood and tissues, to survive H 2O2 generated by the host antibacterial response generated during infection. © 2014 Troxell et al.

publication date

  • January 2, 2014

Research

keywords

  • Academic Article

Identity

Digital Object Identifier (DOI)

  • 10.1371/journal.pone.0084625

PubMed ID

  • 24392147

Additional Document Info

volume

  • 9

number

  • 1