Isolation and properties of flight muscle mitochondria of the bumblebee Bombus terrestris (L.) Academic Article uri icon

Overview

MeSH Major

  • Bees
  • Mitochondria, Muscle

abstract

  • This report describes the isolation procedure and properties of tightly coupled flight muscle mitochondria of the bumblebee Bombus terrestris (L.). The highest respiratory control index was observed upon oxidation of pyruvate, whereas the highest respiration rates were registered upon oxidation of a combination of the following substrates: pyruvate + malate, pyruvate + proline, or pyruvate + glutamate. The respiration rates upon oxidation of malate, glutamate, glutamate + malate, or succinate were very low. At variance with flight muscle mitochondria of a number of other insects reported earlier, B. terrestris mitochondria did not show high rates of respiration supported by oxidation of proline. The maximal respiration rates were observed upon oxidation of α-glycerophosphate. Bumblebee mitochondria are capable of maintaining high membrane potential in the absence of added respiratory substrates, which was completely dissipated by the addition of rotenone, suggesting high amount of intramitochondrial NAD-linked oxidative substrates. Pyruvate and α-glycerophosphate appear to be the optimal oxidative substrates for maintaining the high rates of oxidative metabolism of the bumblebee mitochondria.

publication date

  • August 2013

Research

keywords

  • Academic Article

Identity

Language

  • eng

Digital Object Identifier (DOI)

  • 10.1134/S0006297913080075

PubMed ID

  • 24228879

Additional Document Info

start page

  • 909

end page

  • 14

volume

  • 78

number

  • 8