Phase II trial of panobinostat, an oral pan-deacetylase inhibitor in patients with primary myelofibrosis, post-essential thrombocythaemia, and post-polycythaemia vera myelofibrosis Academic Article uri icon

Overview

MeSH Major

  • Histone Deacetylase Inhibitors
  • Hydroxamic Acids
  • Indoles
  • Polycythemia Vera
  • Primary Myelofibrosis
  • Thrombocythemia, Essential

abstract

  • Myelofibrosis (MF) is a Philadelphia chromosome-negative stem cell myeloproliferative neoplasm (MPN) associated with cytopenias, splenomegaly, constitutional symptoms, and poor prognosis. MF patients commonly express JAK2 V617F mutation and activation of Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signalling. Agents targeting the JAK/STAT pathway have demonstrated efficacy in patients with MF. This study evaluated panobinostat, a pan-deacetylase inhibitor that depletes JAK2 V617F levels and JAK/STAT signalling in MPN cells, in patients with primary MF, post-essential thrombocythaemia MF, and post-polycythaemia vera MF. Patients received panobinostat 40 mg administered three times per week. Dose reductions were permitted for toxicities. The primary endpoint was response rate at 6 months using International Working Group for Myelofibrosis Research and Treatment (IWG-MRT) consensus criteria. Analyses of peripheral blood cells from treated patients revealed that panobinostat inhibited JAK/STAT signalling, decreased inflammatory cytokine levels, and decreased JAK2 V617F allelic burden. However, panobinostat was poorly tolerated at the dose and schedule evaluated, and only 16 of 35 patients completed ≥2 cycles of treatment. One patient (3%) achieved an IWG-MRT response. Common adverse events were thrombocytopenia (71.4%) and diarrhoea (80.0%). Although molecular correlative analyses suggested that panobinostat inhibits key intracellular targets, limited clinical activity was observed because of poor tolerance.

publication date

  • August 2013

Research

keywords

  • Academic Article

Identity

Language

  • eng

Digital Object Identifier (DOI)

  • 10.1111/bjh.12384

PubMed ID

  • 23701016

Additional Document Info

start page

  • 326

end page

  • 35

volume

  • 162

number

  • 3