Histamine 3 receptor activation reduces the expression of neuronal angiotensin II type 1 receptors in the heart Academic Article uri icon

Overview

MeSH Major

  • Heart
  • Histamine Agonists
  • Myocardium
  • Neurons
  • Receptor, Angiotensin, Type 1
  • Receptors, Histamine H3

abstract

  • In severe myocardial ischemia, histamine 3 (H₃) receptor activation affords cardioprotection by preventing excessive norepinephrine release and arrhythmias; pivotal to this action is the inhibition of neuronal Na⁺/H⁺ exchanger (NHE). Conversely, angiotensin II, formed locally by mast cell-derived renin, stimulates NHE via angiotensin II type 1 (AT₁) receptors, facilitating norepinephrine release and arrhythmias. Thus, ischemic dysfunction may depend on a balance between the NHE-modulating effects of H₃ receptors and AT₁ receptors. The purpose of this investigation was therefore to elucidate the H₃/AT₁ receptor interaction in myocardial ischemia/reperfusion. We found that H₃ receptor blockade with clobenpropit increased norepinephrine overflow and arrhythmias in Langendorff-perfused guinea pig hearts subjected to ischemia/reperfusion. This coincided with increased neuronal AT₁ receptor expression. NHE inhibition with cariporide prevented both increases in norepinephrine release and AT₁ receptor expression. Moreover, norepinephrine release and AT₁ receptor expression were increased by the nitric oxide (NO) synthase inhibitor N(G)-methyl-L-arginine and the protein kinase C activator phorbol myristate acetate. H₃ receptor activation in differentiated sympathetic neuron-like PC12 cells permanently transfected with H₃ receptor cDNA caused a decrease in protein kinase C activity and AT₁ receptor protein abundance. Collectively, our findings suggest that neuronal H₃ receptor activation inhibits NHE by diminishing protein kinase C activity. Reduced NHE activity sequentially causes intracellular acidification, increased NO synthesis, and diminished AT₁ receptor expression. Thus, H₃ receptor-mediated NHE inhibition in ischemia/reperfusion not only opposes the angiotensin II-induced stimulation of NHE in cardiac sympathetic neurons, but also down-regulates AT₁ receptor expression. Cardioprotection ultimately results from the combined attenuation of angiotensin II and norepinephrine effects and alleviation of arrhythmias.

publication date

  • January 2012

Research

keywords

  • Academic Article

Identity

Language

  • eng

PubMed Central ID

  • PMC3251025

Digital Object Identifier (DOI)

  • 10.1124/jpet.111.187765

PubMed ID

  • 22011436

Additional Document Info

start page

  • 185

end page

  • 91

volume

  • 340

number

  • 1