Integrating behavior and cardiovascular responses: posture and locomotion. I. Static analysis. Academic Article uri icon

Overview

abstract

  • Heart rate, arterial blood pressure, and renal and mesenteric or femoral blood flow were telemetered from 11 Papio hamadryas in an untethered free-ranging situation. The animals' behavior was recorded on videotape, and the cardiovascular (CV) data were recorded on the audio channels of the tape. The behavior was coded, and the codes were linked to the CV data via a time-code generator and computer control. The CV data were digitized into 1-s intervals, and the static relations between CV measures and the postures/locomotions (P/Ls) associated with the behavior were analyzed. The total frequency distributions for heart rate, blood pressure, and renal conductance approximated Gaussian distributions, whereas femoral conductance was positively skewed. The distribution for renal conductance suggested that during normal waking conditions the kidney is not maximally dilated and may increase or decrease its blood flow. All distributions were highly influenced by the Sit category, which occupied 80% of the total time. The CV measures for all P/Ls had wide ranges, and the CV values associated with each P/L overlapped those for the other P/Ls. The heart rate and renal conductance associated with the various P/Ls showed the largest deviations from the grand means and therefore contributed the most to the ability to discriminate one P/L from another. Blood pressure varied little from one P/L to another. The patterns of CV variables served to distinguish particular P/Ls very effectively. The frequency distributions were separated best when they were parceled on the basis of the intensity of behavior associated with a particular P/L. These variations in intensity were the major cause of the overlaps in the frequency distributions associated with P/Ls.

publication date

  • December 1, 1993

Research

keywords

  • Behavior, Animal
  • Cardiovascular Physiological Phenomena
  • Motor Activity
  • Posture

Identity

Scopus Document Identifier

  • 0027730129

PubMed ID

  • 8285290

Additional Document Info

volume

  • 265

issue

  • 6 Pt 2