Dopamine systems in the forebrain Academic Article Article uri icon


MeSH Major

  • Epigenesis, Genetic
  • Gene Expression Regulation
  • Neuralgia
  • Repressor Proteins


  • The brain contains a number of distinct regions that share expression ofdopamine (DA) and its requisite biosynthetic machinery, but otherwise encompass a diverse array of features and functions. Across the vertebrate family, the olfactory bulb (OB) contains the major DA system in the forebrain. OB DA cells are primarily periglomerular interneurons that define the glomerular structures in which they receive innervation from olfactory receptor neurons as well as mitral and tufted cells, the primary OB output neurons. The OB DA cells are necessary for both discrimination and the dynamic range over which odorant sensory information can be detected. In the embryo, OB DA neurons are derived from the ventricular area of the evaginating telencephalon, the dorsal lateral ganglionic eminence and the septum. However, most OB DA interneurons are generated postnatally and continue to be produced throughout adult life from neural stem cells in the subventricular zone of the lateral ventricle and rostral migratory stream. Adult born OB DA neurons are capable of integrating into existing circuits and do not appear to degenerate in Parkinson's disease. Several genes have been identified that regulate the differentiation of OB DA interneurons from neural stem cells. These include transcription factors that modify the expression of tyrosine hydroxylase, the first enzyme in the DA biosynthetic pathway and a reliable marker of the DA phenotype. Elucidation of the molecular genetic pathways of OB DA differentiation may advance the development of strategies to treat neurological disease.

publication date

  • December 2009



  • Academic Article


Digital Object Identifier (DOI)

  • 10.1007/978-1-4419-0322-8_2

PubMed ID

  • 19731547

Additional Document Info

start page

  • 15

end page

  • 35


  • 651