Association of survival and disease progression with chromosomal instability: A genomic exploration of colorectal cancer Academic Article uri icon

Overview

MeSH Major

  • Chromosomal Instability
  • Colorectal Neoplasms
  • Genome, Human

abstract

  • During disease progression the cells that comprise solid malignancies undergo significant changes in gene copy number and chromosome structure. Colorectal cancer provides an excellent model to study this process. To indentify and characterize chromosomal abnormalities in colorectal cancer, we performed a statistical analysis of 299 expression and 130 SNP arrays profiled at different stages of the disease, including normal tissue, adenoma, stages 1-4 adenocarcinoma, and metastasis. We identified broad (> 1/2 chromosomal arm) and focal (< 1/2 chromosomal arm) events. Broad amplifications were noted on chromosomes 7, 8q, 13q, 20, and X and broad deletions on chromosomes 4, 8p, 14q, 15q, 17p, 18, 20p, and 22q. Focal events (gains or losses) were identified in regions containing known cancer pathway genes, such as VEGFA, MYC, MET, FGF6, FGF23, LYN, MMP9, MYBL2, AURKA, UBE2C, and PTEN. Other focal events encompassed potential new candidate tumor suppressors (losses) and oncogenes (gains), including CCDC68, CSMD1, POLR1D, and PMEPA1. From the expression data, we identified genes whose expression levels reflected their copy number changes and used this relationship to impute copy number changes to samples without accompanying SNP data. This analysis provided the statistical power to show that deletions of 8p, 4p, and 15q are associated with survival and disease progression, and that samples with simultaneous deletions in 18q, 8p, 4p, and 15q have a particularly poor prognosis. Annotation analysis reveals that the oxidative phosphorylation pathway shows a strong tendency for decreased expression in the samples characterized by poor prognosis.

publication date

  • April 28, 2009

Research

keywords

  • Academic Article

Identity

Language

  • eng

PubMed Central ID

  • PMC2678450

Digital Object Identifier (DOI)

  • 10.1073/pnas.0902232106

PubMed ID

  • 19359472

Additional Document Info

start page

  • 7131

end page

  • 6

volume

  • 106

number

  • 17