Coordinated evolution of co-expressed gene clusters in the Drosophila transcriptome. Academic Article uri icon

Overview

MeSH

  • Animals
  • Chromosome Mapping
  • Gene Expression Regulation
  • Genetic Speciation
  • Oligonucleotide Array Sequence Analysis

MeSH Major

  • Drosophila melanogaster
  • Evolution, Molecular
  • Gene Expression Profiling
  • Genes, Insect
  • Multigene Family

abstract

  • Co-expression of genes that physically cluster together is a common characteristic of eukaryotic transcriptomes. This organization of transcriptomes suggests that coordinated evolution of gene expression for clustered genes may also be common. Clusters where expression evolution of each gene is not independent of their neighbors are important units for understanding transcriptome evolution. We used a common microarray platform to measure gene expression in seven closely related species in the Drosophila melanogaster subgroup, accounting for confounding effects of sequence divergence. To summarize the correlation structure among genes in a chromosomal region, we analyzed the fraction of variation along the first principal component of the correlation matrix. We analyzed the correlation for blocks of consecutive genes to assess patterns of correlation that may be manifest at different scales of coordinated expression. We find that expression of physically clustered genes does evolve in a coordinated manner in many locations throughout the genome. Our analysis shows that relatively few of these clusters are near heterochromatin regions and that these clusters tend to be over-dispersed relative to the rest of the genome. This suggests that these clusters are not the byproduct of local gene clustering. We also analyzed the pattern of co-expression among neighboring genes within a single Drosophila species: D. simulans. For the co-expression clusters identified within this species, we find an under-representation of genes displaying a signature of recurrent adaptive amino acid evolution consistent with previous findings. However, clusters displaying co-evolution of expression among species are enriched for adaptively evolving genes. This finding points to a tie between adaptive sequence evolution and evolution of the transcriptome. Our results demonstrate that co-evolution of expression in gene clusters is relatively common among species in the D. melanogaster subgroup. We consider the possibility that local regulation of expression in gene clusters may drive the connection between adaptive sequence and coordinated gene expression evolution.

publication date

  • January 7, 2008

has subject area

  • Animals
  • Chromosome Mapping
  • Drosophila melanogaster
  • Evolution, Molecular
  • Gene Expression Profiling
  • Gene Expression Regulation
  • Genes, Insect
  • Genetic Speciation
  • Multigene Family
  • Oligonucleotide Array Sequence Analysis

Research

keywords

  • Journal Article

Identity

Language

  • eng

PubMed Central ID

  • PMC2266709

Digital Object Identifier (DOI)

  • 10.1186/1471-2148-8-2

PubMed ID

  • 18179715

Additional Document Info

start page

  • 2

volume

  • 8