A MTA2-SATB2 chromatin complex restrains colonic plasticity toward small intestine by retaining HNF4A at colonic chromatin. Academic Article uri icon

Overview

abstract

  • Plasticity among cell lineages is a fundamental, but poorly understood, property of regenerative tissues. In the gut tube, the small intestine absorbs nutrients, whereas the colon absorbs electrolytes. In a striking display of inherent plasticity, adult colonic mucosa lacking the chromatin factor SATB2 is converted to small intestine. Using proteomics and CRISPR-Cas9 screening, we identify MTA2 as a crucial component of the molecular machinery that, together with SATB2, restrains colonic plasticity. MTA2 loss in the adult mouse colon activated lipid absorptive genes and functional lipid uptake. Mechanistically, MTA2 co-occupies DNA with HNF4A, an activating pan-intestinal transcription factor (TF), on colonic chromatin. MTA2 loss leads to HNF4A release from colonic chromatin, and accumulation on small intestinal chromatin. SATB2 similarly restrains colonic plasticity through an HNF4A-dependent mechanism. Our study provides a generalizable model of lineage plasticity in which broadly-expressed TFs are retained on tissue-specific enhancers to maintain cell identity and prevent activation of alternative lineages, and their release unleashes plasticity.

publication date

  • April 27, 2024

Research

keywords

  • Chromatin
  • Colon
  • Hepatocyte Nuclear Factor 4
  • Intestine, Small
  • Matrix Attachment Region Binding Proteins

Identity

PubMed Central ID

  • PMC11055869

Digital Object Identifier (DOI)

  • 10.1038/s41467-024-47738-y

PubMed ID

  • 38678016

Additional Document Info

volume

  • 15

issue

  • 1