Lumbar spine intervertebral disc gene delivery of BMPs induces anterior spine fusion in lewis rats. Academic Article uri icon

Overview

abstract

  • Minimally invasive techniques and biological autograft alternatives such as the bone morphogenetic proteins (BMPs) can reduce morbidity associated with spinal fusions. This study was a proof-of-concept for gene-therapy-mediated anterior spine fusion that could be adapted to percutaneous technique for clinical use. Isogeneic bone marrow stromal cells genetically programmed to express b-galactosidase (LACZ, a marker gene), BMP2, BMP7, a mixture of BMP2 and BMP7 infected cells (homodimers, HM), or BMP2/7 heterodimers (HT) were implanted into the discs between lumbar vertebrae 4 and 5 (L4/5) and L5/6 of male Lewis rats. Spine stiffening was monitored at 4, 8 and 12 weeks using noninvasive-induced angular displacement (NIAD) testing. At 12 weeks isolated spines were assessed for fusion and bone formation by palpation, biomechanical testing [four-point bending stiffness, moment to failure in extension, and in vitro angular displacement (IVAD)], faxitron x-rays, microCT, and histology. Progressive loss of NIAD occurred in only the HT group (p < 0.001), and biomechanical tests correlated with the NIAD results. Significant fusion occurred only in the HT group (94% of animals with one or both levels) as assessed by palpation (p < 0.001), which predicted HT bone production assessed by faxitron (p ≤ 0.001) or microCT (p < 0.023). Intervertebral bridging bone was consistently observed only in HT-treated specimens. Induced bone was located anterior and lateral to the disc space, with no bone formation noted within the disc. Percutaneous anterior spine fusions may be possible clinically, but induction of bone inside the disc space remains a challenge.

publication date

  • October 7, 2022

Research

keywords

  • Intervertebral Disc
  • Spinal Fusion

Identity

PubMed Central ID

  • PMC9547004

Scopus Document Identifier

  • 85139512955

Digital Object Identifier (DOI)

  • 10.1038/s41598-022-21208-1

PubMed ID

  • 36207369

Additional Document Info

volume

  • 12

issue

  • 1