Proteomic Analysis of Plasma Markers in Patients Maintained on Antipsychotics: Comparison to Patients Off Antipsychotics and Normal Controls. Academic Article uri icon

Overview

abstract

  • Background: Schizophrenia (SZ) and bipolar disorder (BD) share many features: overlap in mood and psychotic symptoms, common genetic predisposition, treatment with antipsychotics (APs), and similar metabolic comorbidities. The pathophysiology of both is still not well defined, and no biomarkers can be used clinically for diagnosis and management. This study aimed to assess the plasma proteomics profile of patients with SZ and BD maintained on APs compared to those who had been off APs for 6 months and to healthy controls (HCs). Methods: We analyzed the data using functional enrichment, random forest modeling to identify potential biomarkers, and multivariate regression for the associations with metabolic abnormalities. Results: We identified several proteins known to play roles in the differentiation of the nervous system like NTRK2, CNTN1, ROBO2, and PLXNC1, which were downregulated in AP-free SZ and BD patients but were "normalized" in those on APs. Other proteins (like NCAM1 and TNFRSF17) were "normal" in AP-free patients but downregulated in patients on APs, suggesting that these changes are related to medication's effects. We found significant enrichment of proteins involved in neuronal plasticity, mainly in SZ patients on APs. Most of the proteins associated with metabolic abnormalities were more related to APs use than having SZ or BD. The biomarkers identification showed specific and sensitive results for schizophrenia, where two proteins (PRL and MRC2) produced adequate results. Conclusions: Our results confirmed the utility of blood samples to identify protein signatures and mechanisms involved in the pathophysiology and treatment of SZ and BD.

publication date

  • April 25, 2022

Identity

PubMed Central ID

  • PMC9081931

Digital Object Identifier (DOI)

  • 10.3389/fpsyt.2022.809071

PubMed ID

  • 35546954

Additional Document Info

volume

  • 13