The NF-κB transcriptional footprint is essential for SARS-CoV-2 replication. Academic Article uri icon

Overview

abstract

  • SARS-CoV-2, the etiological agent of COVID-19, is characterized by a delay in Type I interferon (IFN-I)-mediated antiviral defenses alongside robust cytokine production. Here we investigate the underlying molecular basis for this imbalance and implicate virus-mediated activation of NF-κB in the absence of other canonical IFN-I-related transcription factors. Epigenetic and single cell transcriptomic analyses show a selective NF-κB signature that was most prominent in infected cells. Disruption of NF-κB signaling through the silencing of the NF-κB transcription factors p65 or p50 resulted in loss of virus replication that was rescued upon reconstitution. These findings could be further corroborated with the use of NF-κB inhibitors, which reduced SARS-CoV-2 replication in vitro. These data suggest that the robust cytokine production in response to SARS-CoV-2, despite a diminished IFN-I response, is the product of a dependency on NF-κB for viral replication. IMPORTANCE The COVID-19 pandemic has caused significant mortality and morbidity around the world. Although effective vaccines have been developed, large parts of the world remain unvaccinated while new SARS-CoV-2 strains keep emerging. Furthermore, despite extensive efforts and large-scale drug screenings, no fully effective antiviral treatment options have been discovered yet. Therefore, it is of the utmost importance to gain a better understanding of essential factors driving SARS-CoV-2 replication in order to be able to develop novel approaches to target SARS-CoV-2 biology.

publication date

  • September 15, 2021

Research

keywords

  • COVID-19
  • Cytokines
  • Interferon Type I
  • SARS-CoV-2
  • Transcription Factor RelA
  • Transcriptome
  • Virus Replication

Identity

Digital Object Identifier (DOI)

  • 10.1128/JVI.01257-21

PubMed ID

  • 34523966