Protein neddylation as a therapeutic target in pulmonary and extrapulmonary small cell carcinomas. Academic Article uri icon

Overview

abstract

  • Small cell lung carcinoma (SCLC) is among the most lethal of all solid tumor malignancies. In an effort to identify novel therapeutic approaches for this recalcitrant cancer type, we applied genome-scale CRISPR/Cas9 inactivation screens to cell lines that we derived from a murine model of SCLC. SCLC cells were particularly sensitive to the deletion of NEDD8 and other neddylation pathway genes. Genetic suppression or pharmacological inhibition of this pathway using MLN4924 caused cell death not only in mouse SCLC cell lines but also in patient-derived xenograft (PDX) models of pulmonary and extrapulmonary small cell carcinoma treated ex vivo or in vivo. A subset of PDX models were exceptionally sensitive to neddylation inhibition. Neddylation inhibition suppressed expression of major regulators of neuroendocrine cell state such as INSM1 and ASCL1, which a subset of SCLC rely upon for cell proliferation and survival. To identify potential mechanisms of resistance to neddylation inhibition, we performed a genome-scale CRISPR/Cas9 suppressor screen. Deletion of components of the COP9 signalosome strongly mitigated the effects of neddylation inhibition in small cell carcinoma, including the ability of MLN4924 to suppress neuroendocrine transcriptional program expression. This work identifies neddylation as a regulator of neuroendocrine cell state and potential therapeutic target for small cell carcinomas.

publication date

  • May 20, 2021

Research

keywords

  • Carcinoma, Small Cell
  • Cyclopentanes
  • Lung Neoplasms
  • NEDD8 Protein
  • Pyrimidines

Identity

PubMed Central ID

  • PMC8168556

Scopus Document Identifier

  • 85107336673

Digital Object Identifier (DOI)

  • 10.1101/gad.348316.121

PubMed ID

  • 34016692

Additional Document Info

volume

  • 35

issue

  • 11-12