Live Imaging of Antifungal Activity by Human Primary Neutrophils and Monocytes in Response to A. fumigatus. Academic Article uri icon

Overview

abstract

  • Aspergillus fumigatus is an opportunistic fungal pathogen causing invasive infections in immunocompromised hosts with a high case-fatality rate. Research investigating immunological responses against A. fumigatus has been limited by the lack of consistent and reliable assays for measuring the antifungal activity of specific immune cells in vitro. A new method is described to assess the antifungal activity of primary monocytes and neutrophils from human donors against A. fumigatus using FLuorescent Aspergillus REporter (FLARE) conidia. These conidia contain a genetically encoded dsRed reporter, which is constitutively expressed by live FLARE conidia, and are externally labeled with Alexa Fluor 633, which is resistant to degradation within the phagolysosome, thus allowing a distinction between live and dead A. fumigatus conidia. Video microscopy and flow cytometry are subsequently used to visualize the interaction between conidia and innate immune cells, assessing fungicidal activity whilst also providing a wealth of information on phagocyte migration, phagocytosis and the inhibition of fungal growth. This novel technique has already provided exciting new insights into the host-pathogen interaction of primary immune cells against A. fumigatus. It is important to note the laboratory setup required to perform this assay, including the necessary microscopy and flow cytometry facilities, and the capacity to work with human donor blood and genetically manipulated fungi. However, this assay is capable of generating large amounts of data and can reveal detailed insights into the antifungal response. This protocol has successfully been used to study the host-pathogen interaction of primary immune cells against A. fumigatus. It is important to note the laboratory setup required to perform this assay, including the necessary microscopy and flow cytometry facilities, and the capacity to work with human donor blood and genetically manipulated fungi. However, this assay is capable of generating large amounts of data and can reveal detailed insights into the antifungal response. This protocol has successfully been used to study the host-pathogen interaction of primary immune cells against A. fumigatus.

publication date

  • April 19, 2017

Research

keywords

  • Aspergillus fumigatus
  • Host-Pathogen Interactions
  • Microscopy, Video
  • Monocytes
  • Neutrophils

Identity

PubMed Central ID

  • PMC5508861

Scopus Document Identifier

  • 85017504745

Digital Object Identifier (DOI)

  • 10.3791/55444

PubMed ID

  • 28448018

Additional Document Info

issue

  • 122