The role of necroptosis in pulmonary diseases. Review uri icon

Overview

abstract

  • By regulating the cell number and eliminating harmful cells, programmed cell death plays a critical role in development, homeostasis, and disease. While apoptosis is a recognized form of programmed cell death, necrosis was considered a type of uncontrolled cell death induced by extreme physical or chemical stress. However, recent studies have revealed the existence of a genetically programmed and regulated form of necrosis, termed necroptosis. Necroptosis is defined as necrotic cell death that is dependent on receptor-interacting protein kinase 3 (RIPK3). RIPK3, receptor-interacting protein kinase 1 (RIPK1), and a mixed-lineage kinase domain-like protein (MLKL) form a multiprotein complex called a necrosome. Although necroptosis generally provides a cell-autonomous host defense, on the other hand, cell rupture caused by necroptosis induces inflammation through the release of damage-associated molecular patterns, such as mitochondrial DNA, HMGB1, and IL-1. Previously, necroptosis was considered an alternative to apoptosis, but it is becoming increasingly clear that necroptosis itself is relevant to clinical disease, independent of apoptosis. According to some recent studies, autophagy, a cellular process for organelle and protein turnover, regulates necroptosis. This review outlines the principal components of necroptosis and provides an overview of the emerging importance of necroptosis in the pathogenesis of pulmonary disease, including chronic obstructive pulmonary disease, lung cancer, infection, and sepsis. We also discuss the molecular relationship between necroptosis and autophagy. Strategies targeting necroptosis may yield novel therapies for pulmonary diseases.

publication date

  • June 7, 2016

Research

keywords

  • Cell Death
  • Lung Neoplasms
  • Multiprotein Complexes
  • Pulmonary Disease, Chronic Obstructive

Identity

Scopus Document Identifier

  • 84973547168

Digital Object Identifier (DOI)

  • 10.1016/j.resinv.2016.03.008

PubMed ID

  • 27886851

Additional Document Info

volume

  • 54

issue

  • 6