β-TrCP-mediated ubiquitination and degradation of liver-enriched transcription factor CREB-H. Academic Article uri icon

Overview

abstract

  • CREB-H is an endoplasmic reticulum-resident bZIP transcription factor which critically regulates lipid homeostasis and gluconeogenesis in the liver. CREB-H is proteolytically activated by regulated intramembrane proteolysis to generate a C-terminally truncated form known as CREB-H-ΔTC, which translocates to the nucleus to activate target gene expression. CREB-H-ΔTC is a fast turnover protein but the mechanism governing its destruction was not well understood. In this study, we report on β-TrCP-dependent ubiquitination and proteasomal degradation of CREB-H-ΔTC. The degradation of CREB-H-ΔTC was mediated by lysine 48-linked polyubiquitination and could be inhibited by proteasome inhibitor. CREB-H-ΔTC physically interacted with β-TrCP, a substrate recognition subunit of the SCF(β-TrCP) E3 ubiquitin ligase. Forced expression of β-TrCP increased the polyubiquitination and decreased the stability of CREB-H-ΔTC, whereas knockdown of β-TrCP had the opposite effect. An evolutionarily conserved sequence, SDSGIS, was identified in CREB-H-ΔTC, which functioned as the β-TrCP-binding motif. CREB-H-ΔTC lacking this motif was stabilized and resistant to β-TrCP-induced polyubiquitination. This motif was a phosphodegron and its phosphorylation was required for β-TrCP recognition. Furthermore, two inhibitory phosphorylation sites close to the phosphodegron were identified. Taken together, our work revealed a new intracellular signaling pathway that controls ubiquitination and degradation of the active form of CREB-H transcription factor.

publication date

  • March 31, 2016

Research

keywords

  • Cyclic AMP Response Element-Binding Protein
  • Liver
  • Signal Transduction
  • Transcription, Genetic
  • beta-Transducin Repeat-Containing Proteins

Identity

PubMed Central ID

  • PMC4814919

Scopus Document Identifier

  • 84962781992

Digital Object Identifier (DOI)

  • 10.1038/srep23938

PubMed ID

  • 27029215

Additional Document Info

volume

  • 6