Scanning Electrochemical Microscopy Study of Permeability of a Thiolated Aryl Multilayer and Imaging of Single Nanocubes Anchored to It. Academic Article uri icon

Overview

abstract

  • Electroreduction of diazonium salts is a widely used technique for grafting organic films on various surfaces. In this paper, scanning electrochemical microscopy (SECM) was used for high-resolution characterization of a thiolated aryl multilayer film obtained by electrografting of thiophenol diazonium on highly ordered pyrolytic graphite (HOPG). The blocking properties of the film were evaluated, and the origins of incomplete surface passivation were elucidated by comparing current-distance curves and surface reactivity maps obtained with nanometer- and micrometer-sized tips. In this way, one can distinguish between different pathways of charge transport in the film, e.g., pinhole defects versus rate-limiting charge transfer through the film. Pd nanocubes were anchored to the film by thiol groups and imaged by SECM. The applicability of SECM to in situ visualization of the geometry of non-spherical nanoparticles has been demonstrated.

publication date

  • February 29, 2016

Research

keywords

  • Diazonium Compounds
  • Graphite
  • Nanoparticles
  • Sulfhydryl Compounds

Identity

PubMed Central ID

  • PMC6442464

Scopus Document Identifier

  • 84961226830

Digital Object Identifier (DOI)

  • 10.1021/acs.langmuir.5b03858

PubMed ID

  • 26925511

Additional Document Info

volume

  • 32

issue

  • 10