Histone deacetylase inhibitors suppress the induction of c-jun and its target genes including COX-2 Academic Article uri icon

Overview

MeSH Major

  • Enzyme Inhibitors
  • Gene Expression Regulation, Enzymologic
  • Genes, jun
  • Histone Deacetylase Inhibitors
  • Proto-Oncogene Proteins c-jun
  • Transcription, Genetic

abstract

  • Cyclooxygenase-2 (COX-2) is considered to be a target for anticancer therapy. Histone deacetylase (HDAC) inhibitors exhibit antitumor activity, but the mechanisms of action are incompletely understood. We investigated whether HDAC inhibitors blocked AP-1-mediated activation of COX-2 transcription. Trichostatin A and suberoylanilide hydroxamic acid, two structurally related inhibitors of HDAC activity, blocked AP-1-mediated induction of COX-2 expression and prostaglandin E2 biosynthesis. Chromatin immunoprecipitation assays indicated that HDAC inhibitors suppressed c-Jun binding to the COX-2 promoter and thereby blocked transcription. The observed reduction in binding reflected reduced levels of c-Jun. HDAC inhibitors suppressed the induction of c-jun transcription by blocking the recruitment of the preinitiation complex (RNA polymerase II and TFIIB) to the c-jun promoter. HDAC3 but not HDAC1 or HDAC2 was required for AP-1-mediated stimulation of c-jun expression. Because HDAC inhibitors suppressed the induction of c-jun gene expression, resulting in reduced COX-2 transcription, it was important to determine whether other known AP-1 target genes were also modulated. Cyclin D1 and collagenase-1 are AP-1-dependent genes that have been implicated in carcinogenesis. HDAC inhibitors suppressed the induction of both cyclin D1 and collagenase-1 transcription by inhibiting the binding of c-Jun to the respective promoters. Taken together, these results suggest that HDAC inhibitors block the induction of c-jun transcription by inhibiting the recruitment of the preinitiation complex to the c-jun promoter. This led, in turn, to reduced expression of several activator protein-1-dependent genes (COX-2, cyclin D1, collagenase-1). These findings provide new insights into the mechanisms underlying the antitumor activity of HDAC inhibitors.

publication date

  • September 23, 2005

Research

keywords

  • Academic Article

Identity

Language

  • eng

Digital Object Identifier (DOI)

  • 10.1074/jbc.M503201200

PubMed ID

  • 15994313

Additional Document Info

start page

  • 32569

end page

  • 77

volume

  • 280

number

  • 38