Lumbar spine intervertebral disc gene delivery: a pilot study in lewis rats. Academic Article uri icon

Overview

abstract

  • BACKGROUND: Basic research toward understanding and treating disc pathology in the spine has utilized numerous animal models, with delivery of small molecules, purified factors, and genes of interest. To date, gene delivery to the rat lumbar spine has only been described utilizing genetically programmed cells in a matrix which has required partial disc excision, and expected limitation of treatment diffusion into the disc. PURPOSE: This study was designed to develop and describe a surgical technique for lumbar spine exposure and disc space preparation, and use of a matrix-free method for gene delivery. METHODS: Naïve or genetically programmed isogeneic bone marrow stromal cells were surgically delivered to adolescent male Lewis rat lumbar discs, and utilizing quantitative biochemical and qualitative immunohistological assessments, the implanted cells were detected 3 days post-procedure. RESULTS: Statistically significant differences were noted for recovery of the β-galactosidase marker gene comparing delivery of naïve or labeled cells (10(5) cells per disc) from the site of implantation, and between delivery of 10(5) or 10(6) labeled cells per disc at the site of implantation and the adjacent vertebral body. Immunohistology confirmed that the β-galactosidase marker was detected in the adjacent vertebra bone in the zone of surgical implantation. CONCLUSIONS: The model requires further testing in larger cohorts and with biologically active genes of interest, but the observations from the pilot experiments are very encouraging that this will be a useful comparative model for basic spine research involving gene or cell delivery, or other locally delivered therapies to the intervertebral disc or adjacent vertebral bodies in rats.

publication date

  • January 8, 2013

Identity

PubMed Central ID

  • PMC3640714

Scopus Document Identifier

  • 84874109716

Digital Object Identifier (DOI)

  • 10.1007/s11420-012-9319-3

PubMed ID

  • 24426843

Additional Document Info

volume

  • 9

issue

  • 1