MDA-9/syntenin is a key regulator of glioma pathogenesis. Academic Article uri icon

Overview

abstract

  • BACKGROUND: The extraordinary invasiveness of human glioblastoma multiforme (GBM) contributes to treatment failure and the grim prognosis of patients diagnosed with this tumor. Consequently, it is imperative to define further the cellular mechanisms that control GBM invasion and identify promising novel therapeutic targets. Melanoma differentiation associated gene-9 (MDA-9/syntenin) is a highly conserved PDZ domain-containing scaffolding protein that promotes invasion and metastasis in vitro and in vivo in human melanoma models. To determine whether MDA-9/syntenin is a relevant target in GBM, we investigated its expression in tumor samples and involvement in GBM invasion and angiogenesis. MATERIALS: We assessed MDA-9/syntenin levels in available databases, patient tumor samples, and human-derived cell lines. Through gain-of-function and loss-of-function studies, we analyzed changes in invasion, angiogenesis, and signaling in vitro. We used orthotopic xenografts with GBM6 cells to demonstrate the role of MDA-9/syntenin in GBM pathogenesis in vivo. RESULTS: MDA-9/syntenin expression in high-grade astrocytomas is significantly higher than normal tissue counterparts. Forced overexpression of MDA-9/syntenin enhanced Matrigel invasion, while knockdown inhibited invasion, migration, and anchorage-independent growth in soft agar. Moreover, overexpression of MDA-9/syntenin increased activation of c-Src, p38 mitogen-activated protein kinase, and nuclear factor kappa-B, leading to elevated expression of matrix metalloproteinase 2 and secretion of interleukin-8 with corresponding changes observed upon knockdown. GBM6 cells that stably express small hairpin RNA for MDA-9/syntenin formed smaller tumors and had a less invasive phenotype in vivo. CONCLUSIONS: Our findings indicate that MDA-9/syntenin is a novel and important mediator of invasion in GBM and a key regulator of pathogenesis, and we identify it as a potential target for anti-invasive treatment in human astrocytoma.

publication date

  • December 4, 2013

Research

keywords

  • Brain Neoplasms
  • Cell Movement
  • Gene Expression Regulation, Neoplastic
  • Glioma
  • Neovascularization, Pathologic
  • Syntenins

Identity

PubMed Central ID

  • PMC3870820

Scopus Document Identifier

  • 84891510839

Digital Object Identifier (DOI)

  • 10.1093/neuonc/not157

PubMed ID

  • 24305713

Additional Document Info

volume

  • 16

issue

  • 1