Activation of the inflammasome and enhanced migration of microparticle-stimulated dendritic cells to the draining lymph node. Academic Article uri icon

Overview

abstract

  • Porous silicon microparticles presenting pathogen-associated molecular patterns mimic pathogens, enhancing internalization of the microparticles and activation of antigen presenting dendritic cells. We demonstrate abundant uptake of microparticles bound by the TLR-4 ligands LPS and MPL by murine bone marrow-derived dendritic cells (BMDC). Labeled microparticles induce concentration-dependent production of IL-1β, with inhibition by the caspase inhibitor Z-VAD-FMK supporting activation of the NLRP3-dependent inflammasome. Inoculation of BALB/c mice with ligand-bound microparticles induces a significant increase in circulating levels of IL-1β, TNF-α, and IL-6. Stimulation of BMDC with ligand-bound microparticles increases surface expression of costimulatory and MHC molecules, and enhances migration of BMDC to the draining lymph node. LPS-microparticles stimulate in vivo C57BL/6 BMDC and OT-1 transgenic T cell interactions in the presence of OVA SIINFEKL peptide in lymph nodes, with intact nodes imaged using two-photon microscopy. Formation of in vivo and in vitro immunological synapses between BMDC, loaded with OVA peptide and LPS-microparticles, and OT-1 T cells are presented, as well as elevated intracellular interferon gamma levels in CD8(+) T cells stimulated by BMDC carrying peptide-loaded microparticles. In short, ligand-bound microparticles enhance (1) phagocytosis of microparticles; (2) BMDC inflammasome activation and upregulation of costimulatory and MHC molecules; (3) cellular migration of BMDC to lymphatic tissue; and (4) cellular interactions leading to T cell activation in the presence of antigen.

publication date

  • June 8, 2012

Research

keywords

  • Cell Movement
  • Dendritic Cells
  • Inflammasomes
  • Lymph Nodes
  • Lymphocyte Activation

Identity

PubMed Central ID

  • PMC3524399

Scopus Document Identifier

  • 84863320107

Digital Object Identifier (DOI)

  • 10.1021/mp3001292

PubMed ID

  • 22680980

Additional Document Info

volume

  • 9

issue

  • 7