Inhibition of PI3K/mTOR leads to adaptive resistance in matrix-attached cancer cells. Academic Article uri icon

Overview

abstract

  • The PI3K/mTOR-pathway is the most commonly dysregulated pathway in epithelial cancers and represents an important target for cancer therapeutics. Here, we show that dual inhibition of PI3K/mTOR in ovarian cancer-spheroids leads to death of inner matrix-deprived cells, whereas matrix-attached cells are resistant. This matrix-associated resistance is mediated by drug-induced upregulation of cellular survival programs that involve both FOXO-regulated transcription and cap-independent translation. Inhibition of any one of several upregulated proteins, including Bcl-2, EGFR, or IGF1R, abrogates resistance to PI3K/mTOR inhibition. These results demonstrate that acute adaptive responses to PI3K/mTOR inhibition in matrix-attached cells resemble well-conserved stress responses to nutrient and growth factor deprivation. Bypass of this resistance mechanism through rational design of drug combinations could significantly enhance PI3K-targeted drug efficacy.

publication date

  • February 14, 2012

Research

keywords

  • Breast Neoplasms
  • Drug Resistance, Neoplasm
  • Ovarian Neoplasms
  • Phosphoinositide-3 Kinase Inhibitors
  • TOR Serine-Threonine Kinases

Identity

PubMed Central ID

  • PMC3297962

Scopus Document Identifier

  • 84856989746

Digital Object Identifier (DOI)

  • 10.1016/j.ccr.2011.12.024

PubMed ID

  • 22340595

Additional Document Info

volume

  • 21

issue

  • 2