Identification of a novel small-molecule inhibitor of the hypoxia-inducible factor 1 pathway Academic Article uri icon

Overview

MeSH Major

  • Benzopyrans
  • DNA-Binding Proteins
  • Nuclear Proteins
  • Transcription Factors

abstract

  • Hypoxia-inducible factor 1 (HIF-1) is the central mediator of cellular responses to low oxygen and has recently become an important therapeutic target for solid tumor therapy. Inhibition of HIF-1 is expected to result in the attenuation of hypoxia-inducible genes, which are vital to many aspects of tumor biology, including adaptative responses for survival under anaerobic conditions. To identify small molecules inhibiting the HIF-1 pathway, we did a biological screen on a 10,000-membered natural product-like combinatorial library. The compounds of the library, which share a 2,2-dimethylbenzopyran structural motif, were tested for their ability to inhibit the hypoxic activation of an alkaline phosphatase reporter gene under the control of hypoxia-responsive elements in human glioma cells. This effort led to the discovery of 103D5R, a novel small-molecule inhibitor of HIF-1alpha. 103D5R markedly decreased HIF-1alpha protein levels induced by hypoxia or cobaltous ions in a dose- and time-dependent manner, whereas minimally affecting global cellular protein expression levels, including that of control proteins such as HIF-1beta, IkappaBalpha, and beta-actin. The inhibitory activity of 103D5R against HIF-1alpha was clearly shown under normoxia and hypoxia in cells derived from different cancer types, including glioma, prostate, and breast cancers. This inhibition prevented the activation of HIF-1 target genes under hypoxia such as vascular endothelial growth factor (VEGF) and glucose transporter-1 (Glut-1). Investigations into the molecular mechanism showed that 103D5R strongly reduced HIF-1alpha protein synthesis, whereas HIF-1alpha mRNA levels and HIF-1alpha degradation were not affected. 103D5R inhibited the phosphorylation of Akt, Erk1/2, and stress-activated protein kinase/c-jun-NH(2)-kinase, without changing the total levels of these proteins. Further studies on the mechanism of action of 103D5R will likely provide new insights into its validity/applicability for the pharmacologic targeting of HIF-1alpha for therapeutic purposes.

publication date

  • January 15, 2005

Research

keywords

  • Academic Article

Identity

Language

  • eng

PubMed ID

  • 15695405

Additional Document Info

start page

  • 605

end page

  • 12

volume

  • 65

number

  • 2