A novel cell-permeable antioxidant peptide decreases renal tubular apoptosis and damage in unilateral ureteral obstruction. Academic Article uri icon

Overview

abstract

  • Unilateral ureteral obstruction (UUO) is characterized by decreases in renal function, increased interstitial fibrosis, tubular apoptosis, and cellular infiltration. It has been suggested that inhibition of tubular apoptosis may protect against renal damage in obstruction. We have recently developed a series of peptides which are concentrated in the inner mitochondrial membrane and prevent cell death. These peptides are also active in vivo, in myocardial infraction, ischemic brain injury, and amyotrophic lateral sclerosis models. We therefore used SS-31, a prototype of these peptides, and assessed its effects on renal damage and oxidative stress in a 14-day obstruction model. SS-31 (1 or 3 mg/kg) or saline was given 1 day before and throughout the 14 days of obstruction. Kidneys were harvested and assessed for apoptosis (terminal transferase-dUTP-nick-end labeling, caspase 3 expression), fibrosis (trichrome staining), macrophage infiltration, fibroblast expression (immunoperoxidase), and oxidative damage (8-OH deoxyguanosine and heme oxygenase-1 expression), cytokines, and signaling pathways (transforming growth factor-beta, CCR-1, p38-MAPK, NF-kappaB). SS-31 significantly attenuated the effects of obstruction on all aspects of renal damage which were examined, with both the 1 and 3 mg/kg doses showing efficacy. We noted increased oxidative stress in obstruction, which was also attenuated by SS-31 treatment. Signaling via NF-kappaB and p38 MAPK pathways were both affected by SS-31 treatment. This study provides a proof of concept that peptides which protect mitochondria in vitro can provide protection from renal damage in a UUO model. The mechanism by which protection is afforded requires further studies both in vitro and in vivo.

publication date

  • September 10, 2008

Research

keywords

  • Apoptosis
  • Kidney
  • Oligopeptides
  • Ureteral Obstruction

Identity

PubMed Central ID

  • PMC2584902

Scopus Document Identifier

  • 57349111179

Digital Object Identifier (DOI)

  • 10.1152/ajprenal.00395.2007

PubMed ID

  • 18784263

Additional Document Info

volume

  • 295

issue

  • 5