Activation of cholinergic receptors blocks non-adrenergic non-cholinergic contractions in the rat urinary bladder. Academic Article uri icon

Overview

abstract

  • In the present study, the plasticity of the non-adrenergic non-cholinergic (NANC) response was investigated. Isolated rat bladder strips were electrically stimulated and the evoked contractions were isometrically recorded. The NANC part of the contractions were unmasked by applying 500 nM 4-DAMP, a potent muscarinic antagonist. Treatment of the bladder strips with 10 microM carbachol (a cholinergic agonist) increased the muscle tone but did not alter the neurally evoked contractions. However, carbachol decreased: (1) the NANC response from 74.6% to 33.3% of control and (2) the purinergic contractile response to alpha,beta-methylene ATP (alpha,beta-mATP) (10 microM) from 97.0% to 43.4% (p<0.05). Treatment with the cholinesterase inhibitor eserine (10 microM) also significantly decreased the NANC response to 21.1% (p<0.0001). The purinergic receptor antagonist suramin (100 microM) did not affect the neurally evoked contractions, however; subsequent addition of 4-DAMP decreased the contractions to 31%. Activation of the smooth muscle cholinergic receptors (with carbachol or eserine) and purinergic receptors (with alpha,beta-mATP) decreased the NANC contractions and the direct contractile response to alpha,beta-mATP. When the electrically evoked contractions were facilitated by the L-type Ca2+ channel activator, Bay-K 8644 the subsequent application of 4-DAMP did not unmask inhibited NANC contractions. We conclude that activation of muscarinic receptors by cholinergic agonist, carbachol or by endogenous acetylcholine (ACh) induce a cascade of events that leads to diminished purinergic response and consequently an inhibition of the bladder NANC response.

publication date

  • August 26, 2008

Research

keywords

  • Muscle Contraction
  • Muscle, Smooth
  • Receptors, Cholinergic
  • Urinary Bladder

Identity

PubMed Central ID

  • PMC2724651

Scopus Document Identifier

  • 56349155140

Digital Object Identifier (DOI)

  • 10.1016/j.brainresbull.2008.07.011

PubMed ID

  • 18755252

Additional Document Info

volume

  • 77

issue

  • 6