Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. Academic Article uri icon

Overview

abstract

  • PURPOSE: To define the maximum tolerated dose (MTD), toxicities, and pharmacokinetics of 17-allylamino-17-demethoxygeldanamycin (17-AAG) when administered using continuous and intermittent dosing schedules. EXPERIMENTAL DESIGN: Patients with progressive solid tumor malignancies were treated with 17-AAG using an accelerated titration dose escalation schema. The starting dose and schedule were 5 mg/m(2) daily for 5 days with cycles repeated every 21 days. Dosing modifications based on safety, pharmacodynamic modeling, and clinical outcomes led to the evaluation of the following schedules: daily x 3 repeated every 14 days; twice weekly (days 1, 4, 8, and 11) for 2 weeks every 3 weeks; and twice weekly (days 1 and 4) without interruption. During cycle 1, blood was collected for pharmacokinetic and pharmacodynamic studies. RESULTS: Fifty-four eligible patients were treated. The MTD was schedule dependent: 56 mg/m(2) on the daily x 5 schedule; 112 mg/m(2) on the daily x 3 schedule; and 220 mg/m(2) on the days 1, 4, 8, and 11 every-21-day schedule. Continuous twice-weekly dosing was deemed too toxic because of delayed hepatotoxicity. Hepatic toxicity was also dose limiting with the daily x 5 schedule. Other common toxicities encountered were fatigue, myalgias, and nausea. This latter adverse effect may have been attributable, in part, to the DMSO-based formulation. Concentrations of 17-AAG above those required for activity in preclinical models could be safely achieved in plasma. Induction of a heat shock response and down-regulation of Akt and Raf-1 were observed in biomarker studies. CONCLUSION: The MTD and toxicity profile of 17-AAG were schedule dependent. Intermittent dosing schedules were less toxic and are recommended for future phase II studies.

publication date

  • March 15, 2007

Research

keywords

  • Benzoquinones
  • Lactams, Macrocyclic
  • Neoplasms

Identity

PubMed Central ID

  • PMC3203693

Scopus Document Identifier

  • 34250197902

PubMed ID

  • 17363532

Additional Document Info

volume

  • 13

issue

  • 6