Early changes in prostaglandins precede bone formation in a rabbit model of heterotopic ossification. Academic Article uri icon

Overview

abstract

  • We have tested the hypothesis that the formation of heterotopic ossification (HO) in a rabbit model is correlated with a local increase in specific prostaglandins that may modulate mechanisms of ossification. Rabbits were sacrificed at 1 to 21 days following the daily forcible flexion of immobilized knees. The extraction and analysis of prostaglandins (PG) E2, F2alpha, D2, 6-keto-F1alpha, and thromboxane B2 in vastus intermedius muscles of manipulated legs revealed increases compared to control hindlimbs for all five prostaglandins, albeit of differing magnitude. The earliest increase was observed for PGF2alpha after 24 h (to 2.6-fold of control) with peak levels observed at day ten (185-fold of control). PGE2 was increased above control from 2 to 21 days following manipulation, with a peak level of 33-fold of control after 10 days. In a separate arm of the study, the role of PGE2 was investigated through the use of pharmacological antagonist of the PGE2 receptors and one of its second messengers, cAMP. Rabbits were preadministered the PGE2/PGD receptor antagonist AH 6809 or the cAMP antagonist Rp-cAMP prior to undergoing the regimen of limb immobilization and passive exercise. Both AH 6809 and Rp-cAMP were found to prevent the later development of radiographically documented heterotopic ossification in 15 out of 16 animals, thus identifying prostaglandins as being required for the development of ectopic bone. In this latter group, all but one pharmacologically treated animal showed an absence of HO at 3, 4, 5, or 6 weeks. These findings suggest an obligate cascade of prostaglandins for HO that offers the potential for novel prophylactic therapies, including those that target receptors for specific prostaglandins.

publication date

  • October 12, 2005

Research

keywords

  • Disease Models, Animal
  • Ossification, Heterotopic
  • Osteogenesis
  • Prostaglandins
  • Rabbits

Identity

Scopus Document Identifier

  • 32844461217

PubMed ID

  • 16226065

Additional Document Info

volume

  • 38

issue

  • 3