A biomechanical comparison of multistrand flexor tendon repairs using an in situ testing model. Academic Article uri icon

Overview

abstract

  • An in situ testing model was used to evaluate the performance of zone II flexor tendon repairs and to compare the biomechanical properties of 4-strand repairs with 2- and 6-strand repairs. Fifty digits from human cadaveric hands were mounted in a custom apparatus for in situ tensile testing. Intratendinous metallic markers were placed so that gap formation could be determined by fluoroscopy during tensile testing. Three 4-strand repairs (the 4-strand Kessler, the cruciate, and a locked modification of the cruciate repair) were compared with the 2-strand Kessler and the 6-strand Savage repairs. Ultimate tensile strength, load at 2-, 3-, and 4-mm gap formation, and work of flexion were determined. Work of flexion, while increased for the multistrand repairs, did not show a statistically significant correlation with the number of strands crossing the repair site. The tensile strength of the 6-strand repair was significantly greater than each of the 2- or 4-strand repairs. The tensile strength of all 4-strand repairs was significantly greater than the 2-strand repair. The 6-strand repair and the 2 cruciate repairs demonstrated a statistically increased resistance to gap formation compared with the 2-strand Kessler repair, but notably there was no statistically significant difference in gap resistance between the 2and 4-strand Kessler repairs. This in situ tensiletesting protocol demonstrated that 4- and 6-strand repairs have adequate initial strength to withstand the projected forces of early active motion protocols. Three of the 4 multistrand repairs demonstrated improved gap resistance compared with the 2-strand repair. The presence of the second suture in the Kessler configuration significantly increases its strength but not its gap resistance.

publication date

  • May 1, 2000

Research

keywords

  • Gap Junctions
  • Sutures
  • Tendons

Identity

Scopus Document Identifier

  • 0034193847

PubMed ID

  • 10811755

Additional Document Info

volume

  • 25

issue

  • 3