Soluble epoxide hydrolase variant (Glu287Arg) modifies plasma total cholesterol and triglyceride phenotype in familial hypercholesterolemia: Intrafamilial association study in an eight-generation hyperlipidemic kindred Academic Article uri icon


MeSH Major

  • Cholesterol
  • Epoxide Hydrolases
  • Hyperlipoproteinemia Type II
  • Polymorphism, Single Nucleotide
  • Triglycerides


  • Plasma lipid and lipoprotein in general reflect the complex influences of multiple genetic loci, for instance, even familial hypercholesterolemia (FH), a representative example of monogenic hyperlipidemia, often presents with phenotypic heterogeneity. In the course of investigating familial coronary artery disease in Utah, we studied 160 members of an eight-generation extended family of FH in which 69 members were affected with type IIa hyperlipoproteinemia (HLPIIa; high plasma cholesterol) and ten with type IIb hyperlipoproteinemia (HLPIIb; high plasma cholesterol as well as plasma triglyceride). Soluble epoxide hydrolase ( EPHX2, sEH) plays a role in disposition of epoxides in plasma lipoprotein particles. Intrafamilial correlation analysis of the modifier effect of Glu287Arg substitution in the EPHX2 gene was carried out among 79 LDLR mutation carriers and 81 noncarriers. In the carriers, plasma cholesterol levels were elevated among carriers of the 287Arg allele (mean +/- SD=358 +/- 72 mg/dl) in comparison with 287Glu homozygotes (mean +/- SD=302 +/- 72 mg/dl) (p=0.0087). Similarly, in the LDLR mutation carriers, the plasma triglyceride levels were elevated among carriers of the 287Arg allele (mean +/- SD=260 +/- 100 mg/dl) in comparison with 287Glu homozygotes (mean +/- SD=169 +/- 83 mg/dl) (p=0.020). No such gene-interactive effect was observed among noncarriers of the LDLR mutation. Half of the patients who presented with HLPIIb had inherited a defective LDLR allele as well as an EPHX2-287Arg allele, whereas the majority who presented with HLPIIa had a defective LDLR allele but not an EPHX2-287Arg allele. These results indicate a significant modification of the phenotype of FH with defective LDLR allele by EPHX2-287Arg variation in our studied kindred.

publication date

  • February 19, 2004



  • Academic Article



  • eng

Digital Object Identifier (DOI)

  • 10.1007/s10038-003-0103-6

PubMed ID

  • 14673705

Additional Document Info

start page

  • 29

end page

  • 34


  • 49


  • 1