Expression of Key Prostaglandin Synthases in Equine Endometrium during Late Diestrus and Early Pregnancy Academic Article uri icon

Overview

MeSH Major

  • Diestrus
  • Endometrium
  • Hydroxyprostaglandin Dehydrogenases
  • Intramolecular Oxidoreductases
  • Isoenzymes
  • Pregnancy, Animal
  • Prostaglandin-Endoperoxide Synthases

abstract

  • Luteolysis in domestic species is mediated by the release of luteolytic pulses of prostaglandin (PG) F(2alpha) by the uterus at the end of diestrus, which must be suppressed by the conceptus to permit maternal recognition of pregnancy. In many species, including the horse, both the conceptus and the endometrium also synthesize PGE(2), which may antagonize PGF(2alpha) by playing a luteotropic and/or antiluteolytic role. While the release of PGE(2) and PGF(2alpha) by the equine endometrium in late diestrus and early pregnancy has been previously studied, the underlying prostaglandin synthase gene regulatory mechanisms remain poorly defined. To resolve this issue, cyclooxygenase-2 (COX-2), microsomal PGE(2) synthase (PGES), and PGF(2alpha) synthase (PGFS) expression were examined in a series of endometrial biopsies obtained from cycling mares on Days 10, 13, and 15 postovulation, as well as from pregnant mares on Day 15. Quantification of COX-2 expression revealed significant (P < 0.01) increases in both mRNA and protein levels at Day 15 in cycling endometrium relative to other timepoints. Importantly, the level of COX-2 expression in Day 15 pregnant endometrium was found to be comparable with that observed in Day 10 and Day 13 cycling animals, suggesting that the presence of the conceptus blocks the induction of COX-2. Immunohistochemistry demonstrated that the induction of COX-2 expression on Day 15 occurs specifically in surface epithelial cells in cycling animals only. As equine PGFS had not been previously characterized, a 1380-base pair (bp) cDNA transcript was cloned by a combination of reverse transcription-PCR techniques and found to be highly homologous to bovine liver-type PGFS. The pattern of expression observed for the terminal PG synthases was distinct from that of COX-2, as PGES and PGFS mRNA and protein levels were found to be invariant throughout the timecourse and unaffected by pregnancy. Similar to COX-2, however, the PGES and PGFS proteins were found to localize mainly to the surface epithelium. Thus, this study describes for the first time the regulation and spatial distribution of COX-2, PGES, and PGFS expression in equine endometrium in late diestrus, with a marked induction of COX-2 but not of PGES and PGFS expression in uterine epithelial cells at Day 15. Furthermore, the presence of the conceptus was shown to block the induction of COX-2 expression at Day 15, suggesting an important mechanism by which it may suppress uterine PGF(2alpha) release and prevent luteolysis during early pregnancy.

publication date

  • February 2004

Research

keywords

  • Academic Article

Identity

Language

  • eng

Digital Object Identifier (DOI)

  • 10.1095/biolreprod.103.020800

PubMed ID

  • 14561653

Additional Document Info

start page

  • 391

end page

  • 9

volume

  • 70

number

  • 2