Involvement of membrane signaling in the bystander effect in irradiated cells Academic Article uri icon

Overview

MeSH Major

  • Bystander Effect
  • Cell Membrane
  • Signal Transduction

abstract

  • We have shown previously that when confluent cultures of mammalian cells are exposed to very low fluences of alpha particles, fluences whereby only 1-3% of the cell nuclei are traversed by a particle, genetic effects, including specific gene mutations and sister chromatid exchanges, are induced in neighboring, nonirradiated ("bystander") cells (H. Nagasawa and J. B. Little, Cancer Res., 52: 6394-6396, 1992; H. Nagasawa and J. B. Little, Radiat. Res., 152: 552-557, 1999). The present experiments were designed to determine whether signaling pathways arising in the cell membrane may mediate this effect. Cells were irradiated in the presence of Filipin, an agent that disrupts lipid rafts, effectively inhibiting membrane signaling, and the induction of sister chromatid exchange and HPRT mutations by very low fluences of alpha particles (mean doses 0.17-0.5 cGy) was measured. Filipin completely suppressed the induction of both genetic effects in bystander cells. After exposure to 10 cGy, when most mutations occurred in directly irradiated cells, no suppressive effect of Filipin was observed. These results suggest that membrane signaling may play an important role in the bystander effect of radiation. On the other hand, the effects in directly irradiated cells do not appear to be mediated via the cell membrane.

publication date

  • May 2002

Research

keywords

  • Academic Article

Identity

Language

  • eng

PubMed ID

  • 11980645

Additional Document Info

start page

  • 2531

end page

  • 4

volume

  • 62

number

  • 9