Characterization of neuropeptide Y-expressing cells in the mouse retina using immunohistochemical and transgenic techniques Academic Article Article uri icon

Overview

MeSH Major

  • Color Vision
  • Color Vision Defects
  • Genetic Therapy
  • Light
  • Optogenetics
  • Retinal Cone Photoreceptor Cells
  • Retinal Degeneration

abstract

  • The amacrine cells of the retina are a complex family of interneurons. They are made up of numerous subgroups, each with different morphologic and/or biochemical properties and each presumably serving a different function. In this study, we characterized one subgroup, defined by its expression of a peptide, neuropeptide Y (NPY). The cells were identified using antibodies to NPY and characterized using a transgenic mouse line that expressed the reporter enzyme, beta-galactosidase, in the NPY-immunoreactive (NPY-IR) cells. We found that NPY-IR cells were present in two layers, the inner nuclear layer (INL) and the ganglion cell layer (GCL). The cells in both layers were densely distributed, with those in the INL having a mean density of 1452 +/- 65 cells/mm(2), and those in the GCL having a mean density of 644 +/- 41 cells/mm(2). The cells in the INL extended their processes in the sublamina of the inner plexiform layer (IPL) closest to the INL/IPL border, the presumptive OFF sublamina, and the cells in the GCL extended their processes in the sublamina near the GCL/IPL border, the presumptive ON sublamina. Both populations of cells were immunoreactive to a GABA transporter and, thus, likely GABAergic. The high density of these cells suggests that they play a prominent role in IPL processing. The location of their processes suggests that one population acts in the pathway that mediates OFF responses, and the other in the pathway that mediates ON responses, and their expression of a GABA marker indicates that their actions are likely inhibitory.

publication date

  • April 9, 2001

Research

keywords

  • Academic Article

Identity

Digital Object Identifier (DOI)

  • 10.1002/cne.1104

PubMed ID

  • 11246209

Additional Document Info

start page

  • 296

end page

  • 306

volume

  • 432

number

  • 3